Environmental Protection Agency to determine an oxygen correction factor if required by §63.997(e)(2)(iii)(C). You may use American Society of Mechanical Engineers (ASME) PTC 19-10-1981-Part 10 (available for purchase from ASME, P.O. Box 2900, 22 Law Drive, Fairfield, New Jersey, 07007-2900, or online at www.asme.org/catalog) as an alternative to EPA Method 3B of appendix A to 40 CFR part 60. - (f) The control device performance test must consist of three runs and each run must last at least 1 hour. The production conditions during the test runs must represent normal production conditions with respect to the types of parts being made and material application methods. The production conditions during the test must also represent maximum potential emissions with respect to the organic HAP content of the materials being applied and the material application rates. - (g) If you are using a concentrator/oxidizer control device, you must test the combined flow upstream of the concentrator, and the combined outlet flow from both the oxidizer and the concentrator to determine the overall control device efficiency. If the outlet flow from the concentrator and oxidizer are exhausted in separate stacks, you must test both stacks simultaneously with the inlet to the concentrator to determine the overall control device efficiency. - (h) During the test, you must also monitor and record separately the amounts of production resin, tooling resin, pigmented gel coat, clear gel coat, and tooling gel coat applied inside the enclosure that is vented to the control device. ### §63.5855 What are my monitor installation and operation requirements? You must monitor and operate all add-on control devices according to the procedures in 40 CFR part 63, subpart SS. ### § 63.5860 How do I demonstrate initial compliance with the standards? (a) You demonstrate initial compliance with each organic HAP emissions standard in paragraphs (a) through (h) of §63.5805 that applies to you by using the procedures shown in Tables 8 and 9 to this subpart. (b) If using an add-on control device to demonstrate compliance, you must also establish each control device operating limit in 40 CFR part 63, subpart SS, that applies to you. EMISSION FACTOR, PERCENT REDUCTION, AND CAPTURE EFFICIENCY CALCULA-TION PROCEDURES FOR CONTINUOUS LAMINATION/CASTING OPERATIONS ## § 63.5865 What data must I generate to demonstrate compliance with the standards for continuous lamination/casting operations? - (a) For continuous lamination/casting affected sources complying with a percent reduction requirement, you must generate the data identified in Tables 10 and 11 to this subpart for each data requirement that applies to your facility. - (b) For continuous lamination/casting affected sources complying with a lbs/ton limit, you must generate the data identified in Tables 11 and 12 to this subpart for each data requirement that applies to your facility. # §63.5870 How do I calculate annual uncontrolled and controlled organic HAP emissions from my wet-out area(s) and from my oven(s) for continuous lamination/casting operations? To calculate your annual uncontrolled and controlled organic HAP emissions from your wet-out areas and from your ovens, you must develop uncontrolled and controlled wet-out area and uncontrolled and controlled oven organic HAP emissions estimation equations or factors to apply to each formula applied on each line, determine how much of each formula for each end product is applied each year on each line, and assign uncontrolled and controlled wet-out area and uncontrolled and controlled oven organic HAP emissions estimation equations or factors to each formula. You must determine the overall capture efficiency using the procedures in §63.5850 to this subpart. (a) To develop uncontrolled and controlled organic HAP emissions estimation equations and factors, you must, at a minimum, do the following, as specified in paragraphs (a)(1) through (6) of this section: #### § 63.5870 - (1) Identify each end product and the thickness of each end product produced on the line. Separate end products into the following end product groupings, as corrosion-resistant gel applicable: coated end products, noncorrosion-resistant gel coated end products, corrosion-resistant nongel coated end products. and noncorrosion-resistant nongel coated end products. This step creates end product/thickness combinations. - (2) Identify each formula used on the line to produce each end product/thickness combination. Identify the amount of each such formula applied per year. Rank each formula used to produce each end product/thickness combination according to usage within each end product/thickness combination. - (3) For each end product/thickness combination being produced, select the formula with the highest usage rate for testing. - (4) If not already selected, also select the worst-case formula (likely to be associated with the formula with the highest organic HAP content, type of HAP, application of gel coat, thin product, low line speed, higher resin table temperature) amongst all formulae. (You may use the results of the worst-case formula test for all formulae if desired to limit the amount of testing required.) - (5) For each formula selected for testing, conduct at least one test (consisting of three runs). During the test, track information on organic HAP content and type of HAP, end product thickness, line speed, and resin temperature on the wet-out area table. - (6) Using the test results, develop uncontrolled and controlled organic HAP emissions estimation equations (or factors) or series of equations (or factors) that best fit the results for estimating uncontrolled and controlled organic HAP emissions, taking into account the organic HAP content and type of HAP, end product thickness, line speed, and resin temperature on the wet-out area table. - (b) In lieu of using the method specified in paragraph (a) of this section for developing uncontrolled and controlled organic HAP emissions estimation equations and factors, you may either - method specified in paragraphs (b)(1) and (2) of this section, as applicable. - (1) For either uncontrolled or controlled organic HAP emissions estimates, you may use previously established, facility-specific organic HAP emissions equations or factors, provided they allow estimation of both wet-out area and oven organic HAP emissions, where necessary, and have been approved by your permitting authority. If a previously established equation or factor is specific to the wet-out area only, or to the oven only, then you must develop the corresponding uncontrolled or controlled equation or factor for the other organic HAP emissions source. - (2) For uncontrolled (controlled) organic HAP emissions estimates, you may use controlled (uncontrolled) organic HAP emissions estimates and control device destruction efficiency to calculate your uncontrolled (controlled) organic HAP emissions provided the control device destruction efficiency was calculated at the same you collected the data to develop your facility's controlled (uncontrolled) organic HAP emissions estimation equations and factors. - (c) Assign to each formula an uncontrolled organic HAP emissions estimation equation or factor based on the end product/thickness combination for which that formula is used. - (d)(1) To calculate your annual uncontrolled organic HAP emissions from wet-out areas that do not have any capture and control and from wet-out areas that are captured by an enclosure but are vented to the atmosphere and not to a control device, multiply each formula's annual usage by its appropriate organic HAP emissions estimation equation or factor and sum the individual results. - (2) To calculate your annual uncontrolled organic HAP emissions that escape from the enclosure on the wet-out area, multiply each formula's annual usage by its appropriate uncontrolled organic HAP emissions estimation equation or factor, sum the individual results, and multiply the summation by 1 minus the percent capture (expressed as a fraction). - (3) To calculate your annual uncontrolled oven organic HAP emissions, multiply each formula's annual usage by its appropriate uncontrolled organic HAP emissions estimation equation or factor and sum the individual results. - (4) To calculate your annual controlled organic HAP emissions, multiply each formula's annual usage by its appropriate organic HAP emissions estimation equation or factor and sum the individual results to obtain total annual controlled organic HAP emissions. - (e) Where a facility is calculating both uncontrolled and controlled organic HAP emissions estimation equations and factors, you must test the same formulae. In addition, you must develop both sets of equations and factors from the same tests. # § 63.5875 How do I determine the capture efficiency of the enclosure on my wet-out area and the capture efficiency of my oven(s) for continuous lamination/casting operations? - (a) The capture efficiency of a wetout area enclosure is assumed to be 100 percent if it meets the design and operation requirements for a permanent total enclosure (PTE) specified in EPA Method 204 of appendix M to 40 CFR part 51. If a PTE does not exist, then a temporary total enclosure must be constructed and verified using EPA Method 204, and capture efficiency testing must be determined using EPA Methods 204B through E of appendix M to 40 CFR part 51. - (b) The capture efficiency of an oven is to be considered 100 percent, provided the oven is operated under negative pressure. § 63.5880 How do I determine how much neat resin plus is applied to the line and how much neat gel coat plus is applied to the line for continuous lamination/casting operations? Use the following procedures to determine how much neat resin plus and neat gel coat plus is applied to the line each year. - (a) Track formula usage by end product/thickness combinations. - (b) Use in-house records to show usage. This may be either from automated systems or manual records. - (c) Record daily the usage of each formula/end product combination on each line. This is to be recorded at the end of each run (i.e., when a changeover in formula or product is made) and at the end of each shift. - (d) Sum the amounts from the daily records to calculate annual usage of each formula/end product combination by line. #### § 63.5885 How do I calculate percent reduction to demonstrate compliance for continuous lamination/ casting operations? You may calculate percent reduction using any of the methods in paragraphs (a) through (d) of this section. (a) Compliant line option. If all of your wet-out areas have PTE that meet the requirements of EPA Method 204 of appendix M of 40 CFR part 51, and all of your wet-out area organic HAP emissions and oven organic HAP emissions are vented to an add-on control device, use Equation 1 of this section to demonstrate compliance. In all other situations, use Equation 2 of this section to demonstrate compliance. $$PR = \frac{(Inlet) - (Outlet)}{(Inlet)} \times 100 \quad (Eq. 1)$$ Where: PR=percent reduction; Inlet+HAP emissions entering the control device, lbs per year; Outlet=HAP emissions existing the control device to the atmosphere, lbs per year.